Abstract

The antifungal activity of fisetin against Candida albicans is explored, elucidating a mechanism centered on membrane permeabilization and ensuing disruption of pH homeostasis. The Minimum Inhibitory Concentration (MIC) of fisetin, indicative of its interaction with the fungal membrane, increases in the presence of ergosterol. Hoechst 33342 and propidium-iodide staining reveal substantial propidium-iodide accumulation in fisetin-treated C. albicans cells at their MIC, with crystal violet uptake assays confirming fisetin-induced membrane permeabilization. Leakage analysis demonstrates a significant release of DNA and proteins in fisetin-treated cells compared to controls, underscoring the antifungal effect through membrane disruption. Green fluorescence, evident in both the cytoplasm and vacuoles of fisetin-treated cells under BCECF, AM staining, stands in contrast to controls where only acidic vacuoles exhibit staining. Ratiometric pH measurements using BCECF, AM reveal a noteworthy reduction in intracellular pH in fisetin-treated cells, emphasizing its impact on pH homeostasis. DiBAC4(3) uptake assays demonstrate membrane hyperpolarization in fisetin-treated cells, suggesting potential disruptions in ion flux and cellular homeostasis. These results provide comprehensive insights into the antifungal mechanisms of fisetin, positioning it as a promising therapeutic agent against Candida infections.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.