Abstract
The effect of potassium on oxides and carbides of iron for Fischer–Tropsch synthesis (FTS) was investigated by pretreating Fe3O4 and K-promoted Fe catalysts with different gases (H2/H2O and CO). A freshly activated sample and catalysts that were recovered from the CSTR before, during and after FT synthesis were characterized ex situ using Mossbauer spectroscopy. Iron carbide is found to be active for both FT and water gas shift (WGS) reactions. After H2/H2O activation, all three catalysts (Fe3O4, low α-Fe, and high α-Fe) exhibit a steady but low FT activity for a period of FT synthesis. However, both FT and WGS activity for Fe3O4 and low α-Fe catalysts were greatly improved after CO activation. In contrast, the high potassium containing catalyst (high α-Fe) did not show any further improvement in activity after CO activation. The difference in FT and WGS activity observed after pretreatment conditions using these catalysts may be associated to the amount of potassium and conversely the iron carbide present in the catalysts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.