Abstract

Based on density functional first-principles calculations, we study the stability, micro-geometry, and electronic properties of alkali metal atoms adsorbed on silicene, and perform the comparison between pure and hydrogen-saturated silicenes. We found that all the formation energies of SiX(X=Li, Na, K and Rb) are negative, indicating that the relative structural stability of these new compounds is higher than silicene. Bader charge analysis shows that electric charge is transferred from Si atoms to H atoms in SiH compound, but in SiX the direction of charge transfer is opposite, i.e., the charge is transferred from alkali metal atoms to Si atoms. From the viewpoint of chemical bonding, it can be regarded that valence bond is formed between Si atoms and H atoms, and the bonds between Si and alkali metal atoms are mainly ionic, but there exists covalent contribution. From the band structure calculations, it is also found that the new type compound SiLi is a semiconductor with a direct band gap of 0.34 eV; however, all the other compounds of SiX(X=Na, K and Rb) exhibit metallic property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.