Abstract

The chemical corrosion aging of plutonium is a very important topic. It is easy to be corroded and produces oxidation products of various valence states because of its 5f electron orbit between local and non-local. On the one hand, the phase diagram of plutonium and oxygen is complex, so there is still not enough research on typical structural phases. On the other hand, most of the studies on plutonium oxide focus on PuO2 and Pu2O3 with stoichiometric ratio, while the understanding of non-stoichiometric ratio, especially for Pu2O3-x, is not deep enough. Based on this, using the DFT + U theoretical scheme of density functional theory, we have systematically studied the structural stability, lattice parameters, electronic structure, mechanical and optical properties of six typical high temperature phases of β-Pu2O3, α-Pu2O3,γ-Pu2O3, PuO, α-PuO2,γ-PuO2. Further, the mechanical properties and optical behavior of Pu2O3-x under different oxygen vacancy concentrations are analyzed and discussed in detail. The result shows that the elasticity modulus of single crystal in mechanical properties is directly related to the oxygen/plutonium ratio and crystal system. As the number of oxygen vacancies increases, the mechanical constants continue to increase. In terms of optical properties, PuO has the best optical properties, and the light absorption rate decreases with the increase of oxygen vacancy concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.