Abstract

In this paper, the effect of C, N and O atom doping of intrinsic MoSe2 on the adsorption capacity of Ni is investigated based on first-principle research methods. The aim is to analyze whether intrinsic MoSe2 can be doped and modified to improve its adsorption capacity of Ni so that it can be used as a new type of adsorbent material. By calculating and analyzing the energy band structure, density of states, differential charge and optical properties of each system, the conclusions are as follows: the O-doped MoSe2 system has the best adsorption capacity for Ni, and the adsorption capacities of the three systems are in the following order: O>N>C. The bandgap value of intrinsic MoSe2 adsorbed Ni-atom decreases, while the Fermi energy level of the C-doped MoSe2 adsorbed Ni-atom system is located in the valence band, which shows p-type doping. The differential charge of the system was analyzed and the charge transfer of the adsorbed system was increased by C, N and O atom doping, and the O-doped system had the strongest adsorption capacity for Ni. It was shown that the charge distribution between the system and the adsorbed Ni-atom changed considerably after atomic doping, and the bonds between the Ni-atom and the dopant atoms of the C-, N- and O-doped adsorption system were strongly ionic. Optical analysis reveals that C, N and O atom doping improves the charge binding ability of Ni-adsorbed MoSe2 material, which gives it a higher polarization rate and faster electric field response. The absorption of ultraviolet light is greatly enhanced, which can improve the efficiency of solar cells and convert solar energy into electricity more effectively. Overall, the Ni adsorption capacity of atomically doped MoSe2 is improved, indicating that doping can be an effective means to improve the adsorption of Ni-atom by intrinsic MoSe2. It is hoped that the research results in this paper can provide some theoretical guidance for the application of MoSe2 in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.