Abstract

Noncovalent van der Waals (vdW) or dispersion forces are ubiquitous in nature and influence the structure, stability, dynamics, and function of molecules and materials throughout chemistry, biology, physics, and materials science. These forces are quantum mechanical in origin and arise from electrostatic interactions between fluctuations in the electronic charge density. Here, we explore the conceptual and mathematical ingredients required for an exact treatment of vdW interactions, and present a systematic and unified framework for classifying the current first-principles vdW methods based on the adiabatic-connection fluctuation-dissipation (ACFD) theorem (namely the Rutgers-Chalmers vdW-DF, Vydrov-Van Voorhis (VV), exchange-hole dipole moment (XDM), Tkatchenko-Scheffler (TS), many-body dispersion (MBD), and random-phase approximation (RPA) approaches). Particular attention is paid to the intriguing nature of many-body vdW interactions, whose fundamental relevance has recently been highlighted in several landmark experiments. The performance of these models in predicting binding energetics as well as structural, electronic, and thermodynamic properties is connected with the theoretical concepts and provides a numerical summary of the state-of-the-art in the field. We conclude with a roadmap of the conceptual, methodological, practical, and numerical challenges that remain in obtaining a universally applicable and truly predictive vdW method for realistic molecular systems and materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.