Abstract

Transition metal chalcogenides are excellent anode materials for calcium ion batteries (CIBs). In this study, the structural stability, electronic structure, and diffusion barrier of bulk XTe2 (X = Mo, W) were studied by first-principles calculations within the framework of density functional theory. The density of states analysis shows the metal behavior of XTe2 (X = Mo, W) during calcification. The voltage ranges of CayMoTe2 and CayWTe2 are 1.53-0.45 V and 1.48-0.41 V (y = 0-5), respectively. The diffusion barrier of Ca+ through XTe2 indicates that the compressive strain promotes the diffusion of calcium through XTe2. XTe2 is considered to be a promising electrode material for CIBs. In this paper, the transition metal chalcogenides model is constructed by Material Studio 8.0, and the first-principles calculation is carried out by CASTEP module.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.