Abstract

Quantitative analysis of the solution energy of alkaline-earth metal elements to perovskite-type BaTiO3 was carried out by a first-principles calculation combined with thermodynamics theory. The solution energies of neutral solute and a compensated solute with an oxygen vacancy were systematically calculated. They were obtained for two cation sites and four thermodynamical conditions with different chemical potentials of constituent atoms. Both Ca and Sr preferably occupy the Ba site of BaTiO3. On the other hand, Mg occupies the Ti site. This corresponds well to the widely accepted experimental findings regarding site preference. Moreover, under the condition of coexising BaO, CaO and BaTiO3, energy difference between the Ba-site solution and O-vacancy compensated Ti-site solution of Ca ions has been found to be smaller than that of Sr. Under this condition, the O-vacancy compensated Ti-site solution of Ca should be favorable compared with that of Sr. The same number of oxygen vacancies as Ca ions occupying Ti sites can be introduced. This also explains well experimental feature of the Ca-doped BaTiO3-based nonreducible multilayer ceramics capacitor (MLCC) materials regarding solution site of the Ca ion and abundance of O-vacancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.