Abstract

The question whether novel rehabilitation interventions can exploit restorative rather than compensatory mechanisms has gained momentum in recent years. Assessments measuring selective voluntary motor control could answer this question. However, while current clinical assessments are ordinal-scaled, which could affect their sensitivity, lab-based assessments are costly and time-consuming. We propose a novel, interval-scaled, computer-based assessment game using low-cost accelerometers to evaluate selective voluntary motor control. Participants steer an avatar owl on a star-studded path by moving the targeted joint of the upper or lower extremities. We calculate a target joint accuracy metric, and an outcome score for the frequency and amplitude of involuntary movements of adjacent and contralateral joints as well as the trunk. We detail the methods and, as a first proof of concept, relate the results of select children with upper motor neuron lesions (n = 48) to reference groups of neurologically intact children (n = 62) and adults (n = 64). Linear mixed models indicated that the cumulative therapist score, rating the degree of selectivity, was a good predictor of the involuntary movements outcome score. This highlights the validity of this assessgame approach to quantify selective voluntary motor control and warrants a more thorough exploration to quantify changes induced by restorative interventions.

Highlights

  • We wrote an algorithm in MATLAB to calculate the metrics of target joint accuracy and involuntary movements from the accelerometer data (Fig. 2 summarizes the process for both metrics)

  • For the accuracy score, the avatar position was calculated relative to the calibrated range of motion

  • In a first effort to validate this approach, we determined the relationship between the assessgame outcomes accuracy and involuntary movements and several factors, which we considered relevant for estimating the level of selective voluntary motor control (SVMC)

Read more

Summary

Objectives

We aimed to recruit 30 neurologically intact children, aged 6–18 years, to interpret results in children and adolescents with upper motor neuron lesions correctly

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.