Abstract

Collinear laser spectroscopy (CLS) has been combined with the multi-reflection time-of-flight (MR-ToF) technique. To this end, a photodetection system has been implemented at the drift region of a MR-ToF apparatus and a laser beam has been sent along the path of the ions that are stored between the two ion-optical mirrors. The main goal of the present proof-of-principle (PoP) experiments, is the confirmation of the expected increase in sensitivity compared to conventional fluorescence-based CLS due to the repeated probing of the trapped ion bunches. The novel method will be used for the precise measurement of nuclear ground- and isomeric-state properties of exotic nuclei with low production yields at radioactive ion-beam facilities. A significant sensitivity improvement of CLS is expected, depending on the half-life and mass of the nuclide of interest. The status of the PoP setup and future improvements are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.