Abstract
Quantitative measurements by electron microscopy are becoming increasingly important because we are often concerned with establishing quantitative relationships between the properties and structures of materials. This paper presents a method to derive the scattering and phase contrast components from scanning transmission electron microscope (STEM) images using a phase plate and two-dimensional electron detector and to quantitatively evaluate the amount of phase modulation. The phase-contrast transfer function (PCTF) modifies the phase contrast because it is not unity over all spatial frequency regions; therefore, the amount of phase modulation observed in the image becomes smaller than the actual value. We applied a filter function to the Fourier transform of image to perform PCTF correction and evaluated the phase modulation of the electron waves, which was quantitatively agreement with the values expected from the thickness estimated from the scattering contrast within 20% error. So far, few quantitative discussions on phase modulation have been conducted. Although the accuracy needs to be improved, this method is the first step toward quantitative complex observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.