Abstract

It is generally assumed that primary sensory neurons transmit information by their firing rates. However, during natural object manipulations, tactile information from the fingertips is used faster than can be readily explained by rate codes. Here we show that the relative timing of the first impulses elicited in individual units of ensembles of afferents reliably conveys information about the direction of fingertip force and the shape of the surface contacting the fingertip. The sequence in which different afferents initially discharge in response to mechanical fingertip events provides information about these events faster than the fastest possible rate code and fast enough to account for the use of tactile signals in natural manipulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.