Abstract

Lithium-ion thermal runaway will cause great damage to human life safety and property safety, we studied the gas sensitivity of Janus MoSeTe to lithium-ion thermal runaway gas to detect accidents. We performed first-principles simulations of Ag and Au modified MoSeTe monolayers and their sensing properties for C2H4, CH4 and CO, and studied their electronic properties and sensing properties. The results show that the introduction of Ag and Au will improve the gas adsorption effect, especially the adsorption effect of Ag-MoSeTe.When the temperature rises to 498 K, the gas molecules can be desorbed from the material surface in a very short time. In addition, the effect of biaxial strain on the adsorption of CH4 gas molecules was analyzed, and it was found that Ag-MoSeTe had stronger sensing performance for CH4 under biaxial strain. These studies are of great significance for the manufacture of lithium ion thermal runaway gas, and provide a theoretical basis for further exploration of MoSeTe-based material sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.