Abstract
Seeking cheap, efficient and sustainable alternatives to lithium-ion batteries (LIBs), sodium-ion batteries (SIBs) has emerged as a realm of research, due to the abundance of Na in the earth's crust. We have investigated the relative performance of novel intrinsically metallic h-BSi3 (BS) sheet as an anode for SIBs, compared to LIBs, through Density Functional Theory studies. Our calculations show that BS has higher chemisorption interactions with Na than Li atoms while drawing substantial electron densities from both, turning them into cations. BS is able to reach a high specific capacity of 1127.62 mA h g-1 for Na, while only as half of that for Li, at ambient temperatures ranging 300-600 K. The moderate sodiation (0.77 V) and lithiation (0.79 V) voltages facilitate BS to prevent the SEI layer formation, metal plating and harmful dendrite growth and to maintain good energy density. BS retains good electronic and ionic conductivities after hosting both Na and Li adatoms, while the former diffuses with about as half the barriers as those of the latter, supporting faster charge/discharge rate and greater preservation of storage capacities in high current densities when BS is used as an anode in SIBs. Na adsorptions cause relatively lower structural deformations to BS, and refrain from forming clusters, leading to good cyclic stability. The superior electrochemical performance of Na, thus, makes BS a potential anode material for SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.