Abstract

AbstractFirst‐principles calculations of lattice thermal conductivities and thermodynamic properties of Zr2C and Zr2CO were performed using the quasi‐harmonic approximation. Oxygen in the lattice gives Zr2CO higher bonding strength than Zr2C. Thus, the mechanical properties of Zr2C are enhanced when the vacancies in its crystal structure are filled with oxygen. Among the critical parameters that determine the lattice thermal conductivity, Zr2C has significantly higher Grüneisen parameters, thus Zr2C has lower lattice thermal conductivity than Zr2CO. In addition, Zr2CO has a higher heat capacity and thermal expansion coefficient than Zr2C at most temperatures. These results indicate that the addition of oxygen has increased the stiffness and thermal conductivity of zirconium carbide that contains a large fraction of carbon vacancies due to the filling of vacancies in the Zr2C lattice and the formation of Zr–O bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.