Abstract

AbstractWe investigate, from first principles, the electrochemical sodiation mechanism of rutile-type vanadium dioxide as a possible electrode material for sodium-ion batteries. The computed voltages versus sodium metal are low in comparison to current state-of-the-art sodium-ion battery cathodes, which we can relate to the large space demand of sodium ions in the compact rutile structure and the resulting severe lattice deformations compared to other working metals. Due to the same reason large anisotropic unit cell volume changes are predicted during cycling. We furthermore find a change of the preferred reaction mechanism during discharge, with a switching between insertion- and conversion-type reaction at higher degrees of sodiation. The predicted capacities on the other hand are appreciable, making a further consideration of this material as high-potential anode in combination with sodium working metal interesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.