Abstract

Metal/transition metal dichalcogenide interfaces are the subject of active research, in part because they provide various possibilities for interplay of electronic and magnetic properties with potential device applications. Here, we present results of our first principles calculations of nearly strain-free Ni/WSe2 and Ni/MoS2 interfaces in thin-film geometry. It is shown that while both the WSe2 and MoS2 layers adjacent to Ni undergo metallic transition, the layers farther from the interface remain semiconducting. In addition, a moderate value of spin-polarization is induced on interfacial WSe2 and MoS2 layers. At the same time, the electronic and magnetic properties of Ni are nearly unaffected by the presence of WSe2 and MoS2, except a small reduction of magnetic moment at the interfacial Ni atoms. These results can be used as a reference for experimental efforts on epitaxial metal/transition metal dichalcogenide heterostructures, with potential application in modern magnetic storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.