Abstract

By performing first-principles calculations, we study Li doping in a double-wall carbon nanotube where a (5,0) tube is confined inside a (14,0) tube. There are three possible sites for Li doping and two of them are energetically favorable. The change of energy band structure is closely related to the doping sites and the charge transfer is investigated. Bader charge analysis indicates that Li prefers to donate its electron to the inner (5,0) tube. Moreover, the Li capacity of the system can reach LiC4.75 which makes it a promising candidate for Li-ion battery materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.