Abstract

The dielectric breakdown at metal-oxide interfaces is a critical electronic device failure mechanism. Electronic tunneling through dielectric layers is a well-accepted explanation for this phenomenon. Theoretical band alignment studies, providing information about tunneling, have already been conducted in the literature for metal-oxide interfaces. However, most of the time materials were assumed defect free. Oxygen vacancies being very common in oxides, their effect on band lineup is of prime importance in understanding electron tunneling in realistic materials and devices. This work explores the effect of oxygen vacancy and oxygen di-vacancy at the Al/SiO2 interface on the band line up within Density Functional Theory using PBE0 hybrid exchange and correlation functional. It is found that the presence of defects at the interface, and their charge state, strongly alters the band line up.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.