Abstract
Inelastic electron tunneling spectroscopy (IETS) is a powerful experimental tool for studying the molecular and metal contact geometries in molecular electronic devices. A first-principles computational method based on the hybrid density functional theory is developed to simulate the IETS of realistic molecular electronic devices. The calculated spectra of a real device with an octanedithiolate embedded between two gold contacts are in excellent agreement with recent experimental results. Strong temperature dependence of the experimental IETS spectra is also reproduced. It is shown that the IETS is extremely sensitive to the intramolecular conformation and the molecule-metal contact geometry changes. With the help of theoretical calculations, it has finally become possible to fully understand and assign the complicated experimental IETS and, more importantly, provide the structural information of the molecular electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.