Abstract

The hydrogen storage capacities of a sandwich-type ethylene dimetallocene complex (Cp2Ti2C2H4) are studied using first-principles calculations. It is found that the TiC2H4Ti molecule can intercalate into the two cyclopentadienyl (Cp) rings and form a stable sandwich-type complex. Each Ti atom can adsorb a maximum of three H2 molecules, which corresponds to a gravimetric storage capacity of 4.73 wt%. This hydrogen storage capacity is close to the 2015 target of 5.5% set by the US Department of Energy (DOE) in 2009. Furthermore, the Cp2Ti2C2H4 molecule proposed in this paper is favorable for both adsorption and desorption of hydrogen molecules at room temperature and ambient pressure because its average binding energy of 0.34 eV/H2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.