Abstract

Electronic stopping refers to the dynamical energy-transfer process to electrons in matter from highly energetic charged particles such as high-velocity protons. We discuss recent progress in theoretical studies of electronic stopping in condensed matter under ion irradiation, focusing on modern electronic structure theory's role in enabling the study of electronic excitation dynamics that result from the energy transfer. In the last few decades, first-principles simulation approaches based on real-time time-dependent density functional theory have greatly advanced the field. While linear response theory is widely used to study electronic stopping processes, especially for simple solids, novel first-principles dynamics approaches now allow us to study chemically complex systems and also yield detailed descriptions of electronic excitations at the molecular scale. Outstanding challenges for further advancement of electronic stopping modeling are also discussed from the viewpoint of electronic structure theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.