Abstract

Results of precise theoretical full potential linear augmented plane wave determinations of the electronic structures and optical properties of one nm Si nanowires (SiNW) with (001) and (111) orientations are presented. The electronic states at the gaps demonstrate a strong orientation dependent parabolic character in the Brillouin zone and a clear entanglement in real space between different dimensions of the wire. The localization and local symmetry imposed in the states by quantum confinement quenches the transitions around the gap of the SiNW, yielding an optically inactive direct gap. The observed photoluminescence in the (001) wire is attributed to a transition rooted in an ${\mathrm{Si}}_{8}$ ring. The optical structure in the experimental range is well reproduced by the first-principles calculation that includes the screened exchange-local density approximation correction to the well-known failure of the local density approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.