Abstract

Ferroelectric oxides, which exhibit a spontaneous and reversible electric polarization, have recently gained interest for photovoltaic applications, because this polarization can potentially facilitate exciton separation and carrier extraction while also generating open-circuit voltages orders-of-magnitude larger than the band gap. However, photovoltaic efficiencies in these materials are often limited by large band gaps and high hole effective masses. Developing a means to simultaneously reduce both without destroying the ferroelectric polarization could revolutionize photovoltaic technologies. In this work, we use first-principles computations to describe how chemical substitution of oxygen in the recently characterized ferroelectric ZnSnO3 with sulfur to form ZnSnS3 reduces the band gap to a near-optimal 1.3 eV while leaving the polarization virtually unchanged. Furthermore, we show that other key photovoltaic materials characteristics, such as hole effective mass, dielectric constant, and absorption c...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.