Abstract
Organosulfur silanes grafted on an aluminum current collector have been proposed and demonstrated to function as a sulfur source in the cathode for a lithium-sulfur (Li-S) battery. Bis[3-(triethoxysilyl)propyl]disulfide silane (TESPD) and bis[3-(triethoxysilyl)propyl]tetrasulfide silane (TESPT) are typical examples of organosulfur complexes used for the study. These organosulfur silanes act as an insulator. Formation of polysulfides (Li2Sx), which is a major bottleneck in the case of elemental sulfur, can be eliminated using this novel cathode. In the absence of charge-carrying polysulfide species, the role of insulating TESPD/TESPT in the charge conduction pathway is an open question. Insight into the interface between the Al current collector and grafted TESPD/TESPT at an atomic level is a prerequisite for addressing the charge conduction pathway. The systematic theoretical methodology is developed based on electronic structure calculations and ab initio molecular dynamics simulations to propose the realistic cathode model (hydration environment) for the Li-S battery. A cluster model is developed to predict the reduction potentials of TESPD/TESPT disclosing the reduction reaction with Li, resulting in the intramolecular S-S bond breaking which is validated by experimental cyclic voltammetry measurements. A realistic cathode model between the aluminum current collector and TESPD/TESPT is also proposed to mimic the experimental conditions where the Al surface was exposed to O2 and H2O. The top few layers of Al are transformed into α-Al2O3 and covered with H2O molecules in the vicinity of grafted TESPD/TESPT. The structural models are further validated by comparing simulated S 2p binding energies with experimental X-ray photoelectron spectroscopy studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.