Abstract
The geometric structure, electronic structure, optical properties and the formation energy of Sb-doped ZnO with the wurtzite structure are investigated using the first-principles ultra-soft pseudo-potential approach of plane wave based upon the density functional theory. The calculated results indicate that the volume of ZnO doped with Sb becomes larger, and the doping system yields the lowest formation energy of Sb on the interstitial site and the oxygen site. Furthermore, Sb dopant first occupies the octahedral oxygen sites of the wurtzite structure. It is found that Sb substituting on oxygen site behaves as a deep acceptor and shows the p-type degenerate semiconductor character. After doping, the electron density difference demonstrates the considerable electron charge density redistribution, which induces the effect of Sb-doped ZnO to increase the charge overlap between atoms. The density of states move towards lower energy and the optical band gap is broadened. Our calculated results are in agreement with other experimental results and could make more precise monitoring and controlling possible during the growth of ZnO p-type materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.