Abstract

The dynamical properties of a new perovskite GeTiO3 materials have been investigated by using first principle calculation based on Density Functional Theory (DFT) within the gradient generalized approximation (GGA). All calculations were performed using the Cambridge Serial Total Energy Package (CASTEP) computer code. The calculations include the structural parameter, Born effective charges, and phonon dispersion. The calculated Born effective charges and phonon dispersion have been analyzed and the possibility of ferroelectric feature in GeTiO3 compounds has been discussed. From the analysis, the calculated Born effective charge ZGe and ZTi showed large anomaly compared to the nominal charge which contributed to the large atomic displacement. The calculated phonon dispersion showed the most unstable mode was at G point and the unstable modes were dominated by Ge branch. The dynamical properties and ferroelectric properties in GeTiO3 are discussed and compared with the ferroelectric feature in PbTiO3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.