Abstract

Ab initio molecular orbital computations were carried out at three levels of theory: RHF/3-21G, RHF/6-31G(d), and B3LYP/6-31G(d), on four model systems of the amino acid proline, HCO-Pro-NH2 [I], HCO-Pro-NH-Me [II], MeCO-Pro-NH2 [III], and MeCO-Pro-NH-Me [IV], representing a systematic variation in the protecting N- and C-terminal groups. Three previously located backbone conformations, gammaL, epsilonL, and alphaL, were characterized together with two ring-puckered forms syn (gauche+ = g+) or "DOWN" and anti (gauche- = g-) or "UP", as well as trans-trans, trans-cis, cis-trans, and cis-cis peptide bond isomers. The topologies of the conformational potential energy cross-sections (PECS) of the potential energy hypersurfaces (PEHS) for compounds [I]-[IV] were explored and analyzed in terms of potential energy curves (PEC), and HCO-Pro-NH2 [I] was also analyzed in terms of potential energy surfaces (PESs). Thermodynamic functions were also calculated for HCO-Pro-NH2 [I] at the CBS-4M and G3MP2 levels of theory. The study confirms that the use of the simplest model, compound [I] with P(N) = P(C) = H, along with the RHF/3-21G level of theory, is an acceptable practice for the analysis of peptide models because only minor differences in geometry and stability are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.