Abstract

Electron cyclotron (EC) emission (ECE) radiometers viewing perpendicular to the magnetic field are common on nearly all tokamaks for measuring the electron temperature with good spatio-temporal resolution. Two such radiometers are installed on TCV, one looking from the low field side (LFS) and the other from the high field side (HFS). The HFS radiometer is especially sensitive to non-Maxwellian emission in the presence of the strong EC current drive (ECCD) provided by the 3-MW second-harmonic (X2) EC system as the nonthermal radiation is not reabsorbed by the bulk when passing to the receiver. Simultaneous HFS and LFS measurements allow higher-order modeling of the electron distribution function as more constraints are provided by the dual measurements; however, the asymmetric nature of the electron distribution function required for ECCD to occur is not directly put in evidence by these lines of sight. Oblique ECE measurements of an asymmetric nonthermal electron distribution, on the other hand, are expected to also be asymmetric and can provide important information on the current-carrying features of the nonthermal population. A dedicated receiving antenna has been installed allowing real-time swept oblique ECE on TCV in both the co- and counter-looking directions. Proof-of-principle experiments are described in which Doppler-shifted emission is measured.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.