Abstract

We report on the first experimental measurements made at a magnetic confinement fusion device of the tritium(T)-tritium(T) reaction T+T→He4+2n indicating the presence of the intermediate two-body resonant reaction T+T→He5+n. During the second deuterium-tritium campaign (DTE2) at the Joint European Torus, measurements of fusion plasmas with high tritium concentrations, nT/(nT+nD)≈0.99, heated with tritium neutral beam injection, were performed using the neutron time-of-flight (TOF) spectrometer TOFOR. We detect a peak in the neutron emission TOF spectrum consistent with the two-body resonant reaction. The TT neutron emission energy spectrum is modeled using an R-matrix framework where the distributions of the most likely model parameters given our experimental TOF data are determined utilizing a Markov chain Monte Carlo approach. We compare our best estimate of the T+T neutron emission energy spectrum with results obtained at inertial confinement fusion experiments at the OMEGA facility and find a spectral shape that is consistent with the energy dependency in the neutron spectrum observed at OMEGA. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.