Abstract

A liquid lithium limiter (LLL) with capillary porous system has been tested for the first time on the high field medium size tokamak, FTU. Lithium acts as a first wall material in the liquid phase and as a conditioning technique by depositing a lithium film on the walls (lithization). Thermal loads exceeding 5MW/m2 have been so far applied to the LLL surface during plasma discharges: no anomalous Li influx, like ‘lithium bloom’, occurs and no surface damage is observed, even after plasma disruptions. Radiation losses, plasma contamination and working gas recycling are reduced after Li coating of the wall as for boronization but with better results. A large electron temperature increase (∼50%) in the scrape-off layer occurs that is well reproduced by the simulation of 2D code TECXY. The Greenwald density limit is easily reached and even exceeded in the explored plasma current ranges (Ip=0.50–0.9MA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.