Abstract

First exit time distributions for multidimensional processes are key quantities in many areas of risk management and option pricing. The aim of this paper is to provide a flexible, fast and accurate algorithm for computing the probability of the first exit time from a bounded domain for multidimensional diffusions. First, we show that the probability distribution of this stopping time is the unique (weak) solution of a parabolic initial and boundary value problem. Then, we describe the algorithm which is based on a combination of the sparse tensor product finite element spaces and an hp-discontinuous Galerkin method. We illustrate our approach with several examples. We also compare the numerical results to classical Monte Carlo methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.