Abstract

Granisetron is a selective 5-HT3 receptor antagonist used in prevention and treatment of chemotherapy-induced nausea and vomiting. The drug is available in tablet dosage form and parenteral dosage form containing benzyl alcohol as a preservative. The main route of degradation of granisetron is through hydrolysis. The present work describes the development of a simple, rapid, and reliable first derivative spectrophotometric method for the determination of granisetron in presence of its hydrolytic products as well as the formulations adjuvant and benzyl alcohol. The method is based on the measurement of the first derivative response of granisetron at 290 nm where the interference of the hydrolytic products, the co-formulated adjuvant and benzyl alcohol is completely eliminated. The proposed method was validated with respect to specificity, linearity, selectivity, accuracy, precision, robustness, detection, and quantification limits. Regression analysis showed good correlation between the first derivative response and the concentration of granisetron over a range of 8-16 μg ml(-1) . Statistical analysis proved the accuracy of the proposed method compared with a reference stability indicating high performance liquid chromatography method. The described method was successfully applied to the determination of granisetron in different batches of tablets and ampoules. The assay results obtained in this study strongly encourage us to apply the validated method for the quality control and routine analysis of tablets and parenteral preparations containing granisetron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.