Abstract

The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.