Abstract

The static bending of rotating two-layer functionally graded material (FGM) beams with shear connectors resting on imperfect elastic foundations was performed for the first time in this study. Timoshenko beam theory and the finite-element method are used to derive finite-element formulations. The precision of the current approach and mechanical model is shown by comparing the calculated findings of this study to those of previous precise papers. A wide variety of parameter studies are carried out to capture the impact of geometric and material characteristics on the structure’s static bending behaviors, such as the distance d, rotational speed, volume fraction index, elastic foundation parameters, and boundary conditions. This paper’s theory and mechanical models are fascinating since mechanical systems involving rotational motion are pretty standard in engineering practice. Therefore, the computed results of this work aim to contribute to our understanding of structures of this kind.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.