Abstract

The efficiency of a high-flux dialyzer in terms of buffering and toxic solute removal largely depends on the ability to use convection-diffusion mechanism inside the membrane. A two-dimensional transient convection-diffusion model coupled with acid-base correction term was developed. A finite volume technique was used to discretize the model and to numerically simulate it using MATLAB software tool. We observed that small solute concentration gradients peaked and were large enough to activate solute diffusion process in the membrane. While CO2 concentration gradients diminished from their maxima and shifted toward the end of the membrane, HCO3 − concentration gradients peaked at the same position. Also, CO2 concentration decreased rapidly within the first 47 minutes while optimal HCO3 − concentration was achieved within 30 minutes of the therapy. Abnormally high diffusion fluxes were observed near the blood-membrane interface that increased diffusion driving force and enhanced the overall diffusive process. While convective flux dominated total flux during the dialysis session, there was a continuous interference between convection and diffusion fluxes that call for the need to seek minimal interference between these two mechanisms. This is critical for the effective design and operation of high-flux dialyzers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.