Abstract

We apply finite-time scaling to the q-state Potts model with q=3 and 4 on two-dimensional lattices to determine its critical properties. This consists in applying to the model a linearly varying external field that couples to one of its q states to manipulate its dynamics in the vicinity of its criticality and that drives the system out of equilibrium and thus produces hysteresis and in defining an order parameter other than the usual one and a nonequilibrium susceptibility to extract coercive fields. From the finite-time scaling of the order parameter, the coercivity, and the hysteresis area and its derivative, we are able to determine systematically both static and dynamic critical exponents as well as the critical temperature. The static critical exponents obtained in general and the magnetic exponent delta in particular agree reasonably with the conjectured ones. The dynamic critical exponents obtained appear to confirm the proposed dynamic weak universality but unlikely to agree with recent short-time dynamic results for q=4. Our results also suggest an alternative way to characterize the weak universality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.