Abstract
The rise of wing-rock motion in delta-wing aircraft has an adverse effect on the manoeuvrability of aircraft and it may result in its crash. This study presents a finite-time control design to tackle the dynamic motion due to the Wing-Rock effect in delta-wing aircraft. The control design is developed based on the methodology of Super Twisting Sliding Mode Control (STSMC). The Lyapunov stability analysis has been pursued to ensure asymptotic convergence of errors and to determine the finite time. The design of STSMC leads to the appearance of design parameters, which have a direct impact on the dynamic performance of the controlled system. To avoid the conventional tuning of these parameters and to have an optimal performance of the proposed controller, a modern optimization technique has been proposed based on Wale Optimization Algorithm. A comparison study between optimal and non-optimal finite-time super twisting sliding mode controllers has been established and their effectiveness has been verified via numerical simulation using MATLAB programming format.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.