Abstract

Variational methods are a common approach for computing properties of ground states but have not yet found analogous success in finite temperature calculations. In this work we develop a new variational finite temperature algorithm (VAFT) which combines ideas from minimally entangled typical thermal states (METTS), variational Monte Carlo (VMC) optimization and path integral Monte Carlo (PIMC). This allows us to define an implicit variational density matrix to estimate finite temperature properties in two and three dimensions. We benchmark the algorithm on the bipartite Heisenberg model and compare to exact results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.