Abstract

Using the $x-y$ model and a non-local updating scheme called cluster Monte Carlo, we calculate the superfluid density of a two dimensional superfluid on large-size square lattices $L \times L$ up to $400\times 400$. This technique allows us to approach temperatures close to the critical point, and by studying a wide range of $L$ values and applying finite-size scaling theory we are able to extract the critical properties of the system. We calculate the superfluid density and from that we extract the renormalization group beta function. We derive finite-size scaling expressions using the Kosterlitz-Thouless-Nelson Renormalization Group equations and show that they are in very good agreement with our numerical results. This allows us to extrapolate our results to the infinite-size limit. We also find that the universal discontinuity of the superfluid density at the critical temperature is in very good agreement with the Kosterlitz-Thouless-Nelson calculation and experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.