Abstract

We analyse finite-size scaling behaviour of a four-dimensional Higgs-Yukawa model near the Gaussian infrared fixed point. Through improving the mean-field scaling laws by solving one-loop renormalisation group equations, the triviality property of this model can be manifested in the volume-dependence of moments of the scalar-field zero mode. The scaling formulae for the moments are derived in this work with the inclusion of the leading-logarithmic corrections. To test these formulae, we confront them with data from lattice simulations in a simpler model, namely the O(4) pure scalar theory, and find numerical evidence of good agreement. Our results of the finite-size scaling can in principle be employed to establish triviality of Higgs-Yukawa models, or to search for alternative scenarios in studying their fixed-point structure, if sufficiently large lattices can be reached.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.