Abstract

The step shear strain experiment is one of the fundamental transient tests used to characterize the rheology of viscoelastic polymer melts and solutions. Many melts and solutions exhibit homogeneous deformation and stress relaxation; in these cases the transient dynamics can be modeled by completely ignoring momentum effects and imposing singular kinematics. Recently, however, it has been observed that there are certain classes of nearly monodisperse melts and solutions that exhibit anomalous nonhomogeneous deformation and stress relaxation (Morrison and Larson (1990), Larson, Khan, and Raju (1988), Vrentas and Graessley (1982), and Osaki and Kurata (1980)). We demonstrate that, for these classes, a finite rise time must be incorporated, some source of inhomogeneity must be present, and a small amount of added Newtonian viscosity is necessary. We examine five nonlinear and quasilinear models; the Johnson-Segalman, Phan Thien Tanner, Giesekus, White-Metzner, and Larson models. We determine which mathematical features of the models are necessary and/or sufficient to describe the observed experimental behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.