Abstract
In this paper we consider the numerical integration on a polygonal domain Ω in ℝ2 of a function F(x,y) which is integrable except at a point \(P_{0}=(x_{0},y_{0})\in{\stackrel{\circ}{\Omega}}\), where F becomes infinite of order two. We approximate either the finite-part or the two-dimensional Cauchy principal value of the integral by using a spline finite element method combined with a subdivision technique also of adaptive type. We prove the convergence of the obtained sequence of cubatures. Finally, to illustrate the behaviour of the proposed method, we present some numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.