Abstract
The interface between a ferro-/ferrimagnetic insulator and a normal metal can support spin currents polarized collinear with and perpendicular to the magnetization direction. The flow of angular momentum perpendicular to the magnetization direction ("transverse" spin current) takes place via spin torque and spin pumping. The flow of angular momentum collinear with the magnetization ("longitudinal" spin current) requires the excitation of magnons. In this article we extend the existing theory of longitudinal spin transport [Bender and Tserkovnyak, Phys. Rev. B 91, 140402(R) (2015)] in the zero-frequency weak-coupling limit in two directions: We calculate the longitudinal spin conductance non-perturbatively (but in the low-frequency limit) and at finite frequency (but in the limit of low interface transparency). For the paradigmatic spintronic material system YIG|Pt, we find that non-perturbative effects lead to a longitudinal spin conductance that is ca. 40% smaller than the perturbative limit, whereas finite-frequency corrections are relevant at low temperatures < 100 K only, when only few magnon modes are thermally occupied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.