Abstract
The objectives of this study were to develop a numerically controlled experimental set-up to predict the movement caused by the force systems of orthodontic devices and to experimentally verify this system. The presented experimental set-up incorporated an artificial tooth fixed via a 3D force/moment sensor to a parallel kinematics robot. An algorithm determining the initial movement of the tooth in its elastic embedding controlled the set-up. The initial tooth movement was described by constant compliances. The constants were obtained prior to the experiment in a parameterised finite element (FE) study on the basis of a validated FE model of a human molar. The long-term tooth movement was assembled by adding up a multiple of incremental steps of initial tooth movements. A pure translational movement of the tooth of about 8 mm resulted for a moment to force ratio of − 8.85 mm, corresponding to the distance between the bracket and the centre of resistance. The correct behaviour of this linear elastic model in its symmetry plane allows for simulating single tooth movement induced by orthodontic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Biomechanics and Biomedical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.