Abstract

A 3-D model of the aortic root was developed consisting of aortic valve, sinus of Valsalva and aortic duct. Through finite element modeling, the mechanical behavior of the valve was investigated simulating four different configurations: physiological (baseline), aneurysmatic and corrected with two different sparing techniques, named after David and Yacoub, respectively. These surgical procedures imply the replacement of the sinus of Valsalva with a synthetic graft, inside which the cusps are resuspended. The final goal of this study consisted in the assessment of the mechanical effects of sinuses aneurysm on the whole root, as well as the effectiveness of the two aforementioned techniques in restoring valve functionality and normal stress values on the root substructures. Based on the assumption of three-leaflet symmetry, only one third of the aortic root was modeled. Two cardiac cycles were simulated and the mechanical behavior of the aortic root was evaluated in terms of stress pattern, contact pressure and contact areas observed during leaflets coaptation and when contact between the leaflet and the graft occurs. Both the sparing techniques are able to restore coaptation of the aortic valve, but for the David procedure, contact between the leaflet and the graft wall was detected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.