Abstract

In this paper, a numerical simulation of stress development within the air plasma-sprayed thermal barrier coating system incorporating nonlinear behavior under compression for the top coat ceramic layer is presented. The nonlinear behavior as well as its evolution with sintering at high temperature is simulated using a microstructure based model. The simulation results indicate that this nonlinearity has a significant role on distribution of the residual stresses in this layer resulting from the thermal cycling. A parametric study is carried out to investigate the effects of the microstructural features of the top coat ceramic layer on residual stress distribution. It is revealed from the simulation results that the variation of porosity has only a negligible effect on the residual stress distribution. In addition, the stresses accountable for the crack growth can be lowered by changing the microcrack densities of the top coat layer within a specified range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.