Abstract
Titanium alloys are known as difficult-to-machine materials, chip morphology plays a predominant role in determining machinability and tool wear during the machining of titanium alloys. Based on the finite element analysis and experimental validation, the cutting processes in conventional cutting and prestressed cutting of titanium alloy ring parts were explored respectively. The Johnson-Cook model expressed by equivalent plastic strain flow stress is utilized to describe the constitutive properties. A ductile fracture criterion based on the strain energy is applied to model the crack initiation and evolution during the chip segmentation. Cutting force as well as distributions of stress, temperature and equivalent plastic strain along cutting time were numerically compared. The results indicate that in conventional cutting and prestressed cutting, chips show the similar characteristic of continuous and regular serrated shape. Initial stress distribution of workpiece was changed by prestress, which correspondingly leads to the alteration of stress distribution in the subsurface layer. Prestress hardly influences the distributions of temperature and equivalent plastic strain on workpiece. The cutting force curves share the same average amplitude and analogous undulating rhythm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.