Abstract

The technique of soil mechanical stabilization, using geosynthetics, is extensively used in the construction of unpaved roads with a low volume of traffic. Unpaved roads consist of unbound granular bases overlying cohesive subgrades. When built on weak subgrades, these roads are subject to problems like excessive rutting and mud-pumping, increasing maintenance costs and usually leading to periodic interruptions to traffic. Particularly, the field applications of geosynthetic reinforcement placed above a weak subgrade can markedly improve the performance of these roads decreasing permanent vertical deformations, increasing lateral restraint ability, which results in increased pavement service life or reduced base thickness to carry the same number of load repetitions. This paper focuses on providing a numerical investigation using a bi-dimensional Finite Element Method (FEM), using ABAQUS software, to analyze the improvement of reinforced unpaved road under repeated wheel traffic load conditions in terms of aggregate base course thickness saving.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.