Abstract
A finite-element model based on the First-Order Shear Deformation Theory is developed for the static flexural shape and vibration control of a glass fibre/polyester composite plate bonded piezoelectric actuator and sensor patches. The piezoelectric's mass and stiffness are taken into account in the present model. A simple negative velocity feedback control algorithm coupling direct and converse piezoelectric effects are used to actively control the dynamic response of an integrated structure through a closed control loop. The static analysis and active vibration suppression control of a cantilever composite plate are performed as a numerical example to validate the proposed model. The Newmark-\(\beta\) method is used in the numerical simulation to calculate the dynamic response of the piezolaminated composite plate. The numerical results are presented with discussion and in good agreement with carried out experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.